
www.manaraa.com

Research Article
A Formal Verification Methodology for
DDD Mode Pacemaker Control Programs

Sana Shuja, Sudarshan K. Srinivasan, Shaista Jabeen, and Dharmakeerthi Nawarathna

Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Boulevard, Fargo,
ND 58102, USA

Correspondence should be addressed to Sudarshan K. Srinivasan; sudarshan.srinivasan@ndsu.edu

Received 1 June 2015; Revised 4 August 2015; Accepted 12 August 2015

Academic Editor: Massimo Poncino

Copyright © 2015 Sana Shuja et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pacemakers are safety-critical devices whose faulty behaviors can cause harm or even death. Often these faulty behaviors are
caused due to bugs in programs used for digital control of pacemakers. We present a formal verification methodology that can
be used to check the correctness of object code programs that implement the safety-critical control functions of DDD mode
pacemakers. Our methodology is based on the theory of Well-Founded Equivalence Bisimulation (WEB) refinement, where both
formal specifications and implementation are treated as transition systems. We develop a simple and general formal specification
for DDD mode pacemakers. We also develop correctness proof obligations that can be applied to validate object code programs
used for pacemaker control. Using our methodology, we were able to verify a control program with millions of transitions against
the simple specification with only 10 transitions. Our method also found several bugs during the verification process.

1. Introduction

Theheart generates electrical signals to induce heartbeat.The
heart’s electrical system can become defective due to aging
or other causes, leading to a slower heart rate (bradycardia).
Such ailments can be treated using pacemakers, which are
implantable medical devices that generate the electrical sig-
nals required to keep the heartbeat at a healthy rate. Faulty
pacemakers can cause harm or even death to the patients
using them. Hence pacemakers are safety-critical devices
[1, 2].

A control program executed on amicrocontroller embed-
ded in a pacemaker is responsible for implementing the
control functions of the device. With pacemakers being
safety-critical, bugs in the control program cannot be toler-
ated. Medical devices such as pacemakers are very prone to
software errors due to the complex control algorithms that
they use [3]. From 2001 to 2015, the U.S. Food and Drug
Administration (FDA)has issued 38Class 1 recalls onmedical
devices due to software problems [4]. Currently, 169,184 units
have been documented by the FDA to have been affected by
these recalls. A Class I recall indicates that the continued use

of the recalled medical device can result in harm or death to
the patient.

We present a formal verificationmethodology [5] that can
be used to check the correctness of control programs used
in DDD mode pacemakers. The three-letter code of DDD
represents that the pacemaker provides “Dual” chamber pac-
ing, “Dual” chamber sensing, and an action of activation or
inhibition of further pacing in “Dual” chambers on a sensed
event. Pacemakers are most commonly used in the DDD
mode. Our methodology is targeted at verifying control pro-
grams at the object code level. Control programs are coded
using a high-level programming language.The resulting code
(called source code) is compiled to generate object code,
which iswhat is executed by themicrocontroller embedded in
the device. Validating source code is not sufficient for safety-
critical devices, as the compilation process can introduce bugs
in the object code.

The specific contributions of our work are as follows.
First, we have developed a high-level formal specification that
captures the safety-critical software requirements of a DDD
mode pacemaker. We use the notion of a timed transition
system (TTS) tomodel the specification, which captures both

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2015, Article ID 939028, 10 pages
http://dx.doi.org/10.1155/2015/939028

http://dx.doi.org/10.1155/2015/939028

www.manaraa.com

2 Journal of Electrical and Computer Engineering

Atrial
sensing/pacing

Ventricle
sensing/pacing

Right
atrium Right

ventricle

Figure 1: The interface between a heart and a DDD mode pace-
maker.

functional and timing requirements. Second, based on the
specification, we have developed a generic invariant predicate
that captures the reachable states of a DDD mode pacemaker
object code control program (henceforth referred to as the
implementation). The invariant essentially eliminates most
of the unreachable states, which can cause spurious coun-
terexamples during verification and significantly deteriorate
the effectiveness of the verification process. Third, we have
developed rank functions that are used to detect deadlock
bugs in the implementation. Fourth, using the specification,
invariant, and rank functions, we have developed a set of
proof obligations that can be used to effectively check the
correctness of the implementation.The proof obligations can
be discharged using an SMT solver [6, 7] such as z3 [8].
Ourmethodology has been used to verify an implementation
control program with over two million transitions. Note
that, in contrast, our high-level specification has only 10
transitions. Our methodology also found several bugs in the
implementation that we verified.

2. Background: DDD Mode Pacemakers

The heart is a four-chambered organ and has a pair of
atria (left and right atrium) mounted on a pair of ventricles
(left and right ventricle). The sinoatrial (SA) node, a set of
specialized tissues located on the right atrium, is responsible
for generating periodic electrical pulses. These electrical
pulses contract the walls of the atria pushing the blood to
the ventricles. The atrioventricular (AV) node which is a
bundle of specialized tissues situated between the atria and
ventricles does not allow the electrical signals to transmit to
the ventricles until the ventricles are filled with blood. The
bundle next to theAVnode eventually transmits the electrical
pulses to the ventricles with the aid of Purkinje fibers, causing
the muscles of the ventricles to contract and pump the blood
at a healthy pace to the entire body.

The mechanism of the pacemaker revolves around sens-
ing and signaling of electrical pulses. A DDD mode pace-
maker has leads connected to the right atrium and right
ventricle [9].The interface between a heart and a DDDmode
pacemaker is shown in Figure 1. The leads sense the atrium
for the atrial sense (AS: the electrical pulse that contracts
the walls of the atria) and sense the ventricle for ventricle

sense (VS: the electrical pulse that contracts the walls of the
ventricle). If no AS or VS occurs within a healthy heart’s
time limits, the pacemaker generates electrical pulses to
contract the atrium or the ventricle, respectively. The signals
generated by the pacemaker to pace the atrium and the
ventricle are called an atrial pace (AP) and a ventricle pace
(VP), respectively.

The critical timing cycles of a DDD mode pacemaker as
described by Barold et al. [10] are given below.

Lower Rate Interval (LRI). LRI is the longest interval between
a ventricle event ∈ {VS,VP} and the subsequent ventricle
paced event (VP) without superseding sensed events.

Ventricular Refractory Period (VRP). VRP is initiated by a
ventricle event ∈ {VS,VP}. During VRP, LRI cannot be
initiated or reset. During this period, a pacemaker does not
respond to incoming signals.

Atrioventricular Interval (AVI). AVI is the time interval
between an atrial event ∈ {AS,AP} and the following ventricle
event.

Atrial Refractory Period (ARP). ARP is the interval after a
ventricular event ∈ {VS,VP}. During this interval no atrial
event can initiate a new AVI.

Upper Rate Interval (URI).URI limits the ventricle pacing rate
by imposing a lower limit on consecutive ventricle events ∈

{VS,VP}.

Atrial Escape Interval (AEI). AEI is the interval between a
ventricle event ∈ {VS,VP} and the subsequent atrial pacing
event (AP) with no intervening sensed events

AEI = LRI − AVI. (1)

3. Related Work

Tuan et al. [11] have developed a formal model for a pace-
maker as anRTS (real-time system)model. Correctness prop-
erties were checked using the PATmodel checker. Gomes and
Oliveira proposed a formal specification of a pacemaker using
the Z notation [12]. They used the ProofPower-Z theorem
prover to check if their specification model satisfied the
pacemaker requirements. A Dual chamber implantable pace-
maker was taken as a case study formodeling and verification
of control algorithms for medical devices in UPPAAL [13,
14]. All of the above works are formal verification methods
targeted at the verification of high-level pacemaker control
models. In contrast, our formal verification methodology
is targeted at the verification of low-level interrupt driven
object code (which is what is executed by the microcontroller
embedded in the pacemaker device).

In Section 4, we develop a formal specification model
for DDD mode pacemaker control. Above, we have outlined
several previous works that have proposed formal models for
pacemaker control. Why do we develop another model? As
stated earlier, our goal is to develop a verification methodol-
ogy for object code. We use the theory of WEB refinement

www.manaraa.com

Journal of Electrical and Computer Engineering 3

for this purpose. In Section 5, we have described why we
use the WEB refinement theory. This theory of refinement
requires that both the implementation and specification be
modeled as transition systems. The previous formal models
for pacemaker control cannot be employed in the context
of WEB refinement. Also, we have developed a specification
model that is as simple and clear and of high-level as possible,
so that the resulting verification methodology is efficient.

Jiang et al. [15] proposed a set of general and patient
condition-specific temporal requirements for the closed-loop
heart and pacemaker system. They also have developed a
closed-loop testing environment between a timed automata-
based heart model and a pacemaker. Jiang et al. [16] have
developed a cyber-physical system (CPS) model of the heart
and used this model for testing of a pacemaker model and
software. The above methods are based on testing, whereas
we propose a formal verification methodology. The methods
can be considered to complement each other. Testing is of
course the industry standard and very useful in finding bugs.
Formal verification is useful in locating corner-case hard-to-
find bugs and can also be used to provide guarantees about
software correctness. Another contrast with the above works
is that they have developed andused aCPSmodel of the heart,
which is used to test the software. We verify the low-level
software against the high-level software requirements.

4. Formal Specification Model for
DDD Mode Pacemakers

The requirements of a DDD mode pacemaker are given in
[17]. These requirements are based on two timelines 𝑡

𝑎
and

𝑡V. 𝑡𝑎 is the time elapsed since the last atrial event (AS or
AP). 𝑡V is the time elapsed since the last ventricle event (VS
or VP). 𝐴 in is the atrial input and 𝑉in is the ventricle input
received from the heart. If valid 𝐴 in is detected, then the
pacemaker registers an atrial sense event (AS). If valid 𝑉in is
detected, then the pacemaker registers a ventricle sense event
(VS). Figure 1 shows the interface between the heart and the
pacemaker. The requirements from [17] are given below.

Atrial Sensing

AS.1: AS cannot occur within the interval 𝑡V ∈ (0,ARP].

AS.2: if atrial input (𝐴 in) occurs within interval 𝑡V ∈

(0,ARP), it should be disregarded (no AS is generated
within 𝑡V ∈ (0,ARP)).

AS.3: if 𝐴 in occurs at 𝑡V ≥ ARP, AS is to be created at 𝑡V.

Ventricle Sensing

VS.1: VS cannot be generated within the interval 𝑡V ∈

(0,VRP).

VS.2: if ventricle input (𝑉in) occurs at 𝑡V ∈ (0,VRP), it
should be ignored (no VS is generated within 𝑡V ∈

(0,VRP)).

VS.3: if 𝑉in occurs at 𝑡V ≥ VRP, VS is to be created at 𝑡V.

s1
AS

s0

s2
APa

s3
APd

s4
VP

s5
VS

⟨ARP,AEI − 1⟩

⟨1, AVI − 1⟩

⟨1, AVI − 1⟩

⟨ARP,AEI − 1⟩

⟨AVI ,AVI⟩ ⟨AVI ,AVI⟩

⟨PWA, PWA⟩

⟨AEI ,AEI⟩

⟨AEI ,A
EI⟩

⟨PWV, PWV⟩

Figure 2: Figure depicts the TTS𝑀PM Specification.

Atrial Pacing

AP.1: AP cannot occur during the interval 𝑡V ∈ [0,AEI),
where AEI = LRI − AVI.

AP.2: if AS does not occur within interval 𝑡V ∈ [0,AEI), an
AP should occur at 𝑡V = AEI.

AP.3: if AS occurs at 𝑡V ∈ [0,AEI), AP should not be applied
in the atrium within the interval 𝑡V ∈ [0,AEI).

Ventricle Pacing

VP.1: VP cannot occur during the interval 𝑡
𝑎
∈ (0,AVI).

VP.2: VP cannot be generated within 𝑡V ∈ (0,URI).
VP.3: if VS does not occur in intervals 𝑡

𝑎
∈ (0,AVI) and

𝑡V ≥ URI, VP should occur at 𝑡
𝑎
= AVI.

VP.4: if VS occurs at 𝑡
𝑎

∈ (0,AVI), no VP should be
generated within the interval 𝑡

𝑎
∈ (0,AVI).

We present a formal specificationmodel that captures the
above requirements.We use timed transition system (TTS) to
model the pacemaker specification. TTS is defined as follows.

Definition 1. A timed transition system (TTS) M is a 3-
tuple ⟨𝑆, 𝑅, 𝐿⟩, where 𝑆 is the set of states, 𝑅 is the transition
relation, which is the set of all state transitions, and 𝐿 is a
labeling function that defines what is visible at each state. A
state transition is of the form ⟨𝑤, V, 𝑙𝑏, 𝑢𝑏⟩, where𝑤, V ∈ 𝑆 and
𝑙𝑏, 𝑢𝑏 ∈ R. 𝑙𝑏 and 𝑢𝑏 indicate the lower bound and the upper
bound on the time delay of the transition, respectively.

The TTS specification is shown in Figure 2. The TTS
specificationMPM = ⟨𝑆PM, 𝑅PM, 𝐿PM⟩ has 6 states:

𝑆PM = {𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
} . (2)

We use 5 atomic propositions for the model. Atomic propo-
sitions are predicates that are either true or false in each of
the states. The atomic propositions are AS, AP

𝑎
, AP
𝑑
, VS,

and VP. AS and VS indicate atrial sense and ventricle sense,
respectively. VP indicates ventricle pacing. For atrial pacing
(AP), we use two atomic propositions AP

𝑎
and AP

𝑑
. AP
𝑎

indicates when the pacemaker should assert an atrial pacing

www.manaraa.com

4 Journal of Electrical and Computer Engineering

and AP
𝑑
indicates when the pacemaker should deassert an

atrial pacing. The transition relation of the specification TTS
is given below:

𝑅PM = {⟨𝑠
0
, 𝑠
2
,AEI,AEI⟩ , ⟨𝑠

0
, 𝑠
1
,ARP,AEI − 1⟩ ,

⟨𝑠
1
, 𝑠
4
,AVI,AVI⟩ , ⟨𝑠

2
, 𝑠
3
,PWV,PWV⟩ ,

⟨𝑠
1
, 𝑠
5
, 1,AVI − 1⟩ , ⟨𝑠

5
, 𝑠
1
,ARP,AEI − 1⟩ ,

⟨𝑠
3
, 𝑠
5
, 1,AVI − 1⟩ , ⟨𝑠

4
, 𝑠
0
,PWA,PWA⟩ ,

⟨𝑠
3
, 𝑠
4
,AVI,AVI⟩ , ⟨𝑠

5
, 𝑠
2
,AEI,AEI⟩} .

(3)

Pulse Width Atrial (PWA) and Pulse Width Ventricle
(PWV) signify the time for which the ventricle pacing signal
(VP) and the atrial pacing signal (AP), respectively, should
remain asserted. PWA and PWV indicate the length of the
pulses on the atrial timeline 𝑡

𝑎
and the ventricle timeline

𝑡V, respectively, and are hence named as such. The labeling
function is defined as follows:

𝐿PM (𝑠
0
) = 𝜙,

𝐿PM (𝑠
1
) = {AS} ,

𝐿PM (𝑠
2
) = {AP

𝑎
} ,

𝐿PM (𝑠
3
) = {AP

𝑑
} ,

𝐿PM (𝑠
4
) = {VP} ,

𝐿PM (𝑠
5
) = {VS} .

(4)

We now describeMPM and how it relates to the require-
ments.

State 𝑠
0
. 𝑠
0
is the reset state. In this state, the pacemaker is

expecting an atrial sense. If an atrial sense is detected, the
pacemaker should transition to 𝑠

1
, which is the state labeled

with the AS predicate. However, an Ain that occurs in the
interval 𝑡V ∈ (0,ARP) should be ignored (requirements AS.1
andAS.2). Also, if Ain occurs for 𝑡V ≥ ARP, thenAS should be
generated (requirement AS.3). Requirements AS.1, AS.2, and
AS.3 are enforced by imposing a lower bound of ARP on the
transition 𝑠

0
→ 𝑠
1
. If 𝑡V = AEI, then the pacemaker should

generate an atrial pace AP (requirement AP.2).Therefore, the
maximum time the pacemaker can wait for an AS is AEI − 1,
which is the upper bound for 𝑠

0
→ 𝑠
1
. Also, when 𝑡V =

AEI and an AS has not occurred yet, the pacemaker should
generate an AP. Therefore, the specification transitions from
𝑠
0
to 𝑠
2
with a lower bound and upper bound of AEI. The

lower bound of AEI for 𝑠
0

→ 𝑠
2
also satisfies AP.1. If the

pacemaker transitions to 𝑠
1
, it cannot generate an AP in

the interval 𝑡V ∈ [0,AEI), because there is no path in the
specification model from 𝑠

1
to 𝑠
2
in this interval. Therefore,

the specification model captures requirement AP.3.

State 𝑠
1
. After an atrial sense (AS) has occurred, the pace-

maker waits for a ventricle sense in state 𝑠
1
. If a VS occurs,

the pacemaker transitions to state 𝑠
5
, which is marked by

predicate VS. Requirement VP.3 states that the maximum

time a pacemaker can wait for a VS is 𝑡
𝑎

∈ (0,AVI), which
enforces a lower bound of 1 and an upper bound of AVI − 1

on the transition 𝑠
1

→ 𝑠
5
. Also, when 𝑡

𝑎
= AVI and a

VS has not occurred yet (requirement VP.3), the pacemaker
should generate a VP. Therefore, the specification transitions
from 𝑠

1
to 𝑠
4
with an upper bound of AVI. Also from VP.1

we get a lower bound of AEI for the transition 𝑠
1
to 𝑠
4
. If

the pacemaker transitions to 𝑠
5
, it cannot generate a VP in

the interval 𝑡
𝑎

∈ [0,AVI) because there is no path in the
specification model from 𝑠

5
to 𝑠
4
in this interval. Therefore,

the specification model captures requirement VP.4.

State 𝑠
5
. In state 𝑠

5
, a VS has just occurred. The pacemaker is

nowwaiting for an atrial event.Therefore, state 𝑠
5
is similar to

state 𝑠
0
and has similar transitions. 𝑠

0
transitions to 𝑠

1
and 𝑠
2
.

Similarly, 𝑠
5
also transitions to 𝑠

1
and 𝑠
2
with the same lower

and upper bounds for both transitions.

State 𝑠
3
. In state 𝑠

3
, an atrial event has just been completed.

Thepacemaker is nowwaiting for a ventricle event.Therefore,
state 𝑠

3
is similar to state 𝑠

1
and has similar transitions. 𝑠

1

transitions to 𝑠
5
and 𝑠
4
. Similarly, 𝑠

3
also transitions to 𝑠

5
and

𝑠
4
with the same lower and upper bounds for both transitions.

States 𝑠
2
, 𝑠
4
. From [18], the pulse width for emergency brady-

cardia pacing is approximately 1.00ms ± 0.02ms. Therefore,
the pulse width of both AP and VP should be 1.00ms ±

0.02ms. AP is asserted in 𝑠
2
and deasserted in 𝑠

3
. Therefore,

𝑠
2

→ 𝑠
3
has a lower bound and upper bound of PWV =

1.00ms ± 0.02ms; PWV stands for Pulse Width Ventricle, as
the next event is a ventricle event. Similarly, VP is asserted in
𝑠
4
and deasserted in 𝑠

0
.Therefore, 𝑠

4
→ 𝑠
0
has a lower bound

and an upper bound of PWA= 1.00ms±0.02ms; PWA stands
for Pulse Width Atrial, as the next event is an atrial event.

So far the specification TTS accounts for requirements
AP.1–AP.3, AS.1–AS.3, VP.1, VP.3, and VP.4. Requirements
VS.1, VS.2, and VS.3 can be enforced by imposing a lower
bound of VRP on when VS is generated, but on the 𝑡V
timeline. VS is generated in state 𝑠

5
. However, 𝑡V is reset in

states in which a ventricle event is completed, which are states
𝑠
0
and 𝑠
5
. Hence the requirements VS.1, VS.2, and VS.3 can

be enforced by imposing a lower bound on the combined
delays of transitions ⟨𝑠

0
, 𝑠
1
⟩, ⟨𝑠
1
, 𝑠
5
⟩ and transitions ⟨𝑠

0
, 𝑠
2
⟩,

⟨𝑠
2
, 𝑠
3
⟩, and ⟨𝑠

3
, 𝑠
5
⟩. These constraints are not expressible in

TTS. Therefore, we introduce a new notion called composite
TTS (CTTS) defined below, to capture such requirements.

Definition 2. A composite constraint is a finite tuple ⟨𝑠
𝑖
,

𝑠
𝑖+1

, . . . , 𝑠
𝑛
, 𝑙𝑏, 𝑢𝑏⟩ such that, for 𝑖 ≤ 𝑗 < 𝑛, ⟨𝑠

𝑗
, 𝑠
𝑗+1

⟩ ∈ 𝑅

and 𝑙𝑏, 𝑢𝑏 ∈ R. 𝑙𝑏 and 𝑢𝑏 indicate the lower bound and
the upper bound on the combined time delays of transitions
⟨𝑠
𝑖
, 𝑠
𝑖+1

⟩, . . . , ⟨𝑠
𝑛−1

, 𝑠
𝑛
⟩, respectively.

Definition 3. A composite TTS (CTTS) is 4-tuple ⟨𝑆, 𝑅, 𝐿,

𝑅
𝐶
⟩, where ⟨𝑆, 𝑅, 𝐿⟩ is a TTS and 𝑅

𝐶
is a set of composite

constraints.

The composite constraints corresponding to require-
ments VS.1, VS.2, and VS.3 are given below:

𝑅
𝐶1

= {⟨𝑠
0
, 𝑠
1
, 𝑠
5
,VRP, 𝑋⟩ , ⟨𝑠

0
, 𝑠
2
, 𝑠
3
, 𝑠
5
,VRP, 𝑋⟩} . (5)

www.manaraa.com

Journal of Electrical and Computer Engineering 5

In the above and in the discussions that follow,𝑋 indicates
a don’t care. 𝑋 for a lower bound indicates that there is no
requirement on the lower bound. Similarly, 𝑋 on the upper
bound indicates that there is no requirement on the upper
bound.

Requirement VP.2 also results in composite constraints.
VP.2 gives a lower bound on when VP can be generated, but
on the 𝑡V timeline. VP is generated in 𝑠

4
. 𝑡V is reset in 𝑠

0
and

𝑠
5
. Hence, requirement VP.2 can be enforced by imposing a

lower bound on the combined delays of transitions ⟨𝑠
0
, 𝑠
1
⟩,

⟨𝑠
1
, 𝑠
4
⟩ and transitions ⟨𝑠

0
, 𝑠
2
⟩, ⟨𝑠
2
, 𝑠
3
⟩, and ⟨𝑠

3
, 𝑠
4
⟩.Therefore,

to satisfy VP.2, the following composite constraints are
required:

𝑅
𝐶2

= {⟨𝑠
0
, 𝑠
1
, 𝑠
4
,URI, 𝑋⟩ , ⟨𝑠

0
, 𝑠
2
, 𝑠
3
, 𝑠
4
,URI, 𝑋⟩} . (6)

The composite constraint of the pacemaker specification
𝑅
𝐶
is given by

𝑅
𝐶
= 𝑅
𝐶1

∪ 𝑅
𝐶2

. (7)

4.1. Verification of CTTS Specification Using UPPAAL. We
checked that the CTTS specification satisfies all the DDD
mode pacemaker requirements from [17] (also given in
Section 4) using UPPAAL [19, 20], which is a standard tool
for checking properties of timed systems [21]. UPPAAL can
be used to check if a real-time system modeled as a network
of timed automata satisfies properties expressed in CTL
(Computational Tree Logic) [22]. We encoded the CTTS
specification as a timed automaton [23] and expressed all
the requirements as CTL properties. We were able to verify
that the CTTS specification satisfied all the CTL properties
corresponding to the requirements.

The UPPAAL model corresponding to the CTTS specifi-
cation is described next. In UPPAAL, states are represented
as locations, and locations are connected with edges. Edges
represent transitions. An edge emanating from a state can
be labeled with a guard or an update or both. The edge
is enabled if the guard of that edge is evaluated to true.
An update on an edge is an expression that is executed
when the guard is evaluated to be true. The UPPAAL model
of the CTTS specification is shown in Figure 3. Each state
in the CTTS specification has a corresponding location in
the UPPAL model. The UPPAL model has three additional
locations: 𝑠

1
𝑐, 𝑠
3
𝑐, and 𝑠

5
𝑐. We will describe the need for

these additional locations shortly. Timelines 𝑡V and 𝑡
𝑎
, which

are described in Section 4, are modeled as clocks clk𝑡V and
clk𝑡
𝑎
in UPPAAL. Clocks are encoded as state variables. The

timing requirements (lower bounds and upper bounds on
transitions) including the composite constraints are modeled
as guards on the clock variables in UPPAAL. Due to lack
of space, the UPPAAL model is marked with guards labeled
with 𝑔

𝑥𝑦
, where 𝑥 is the source state and 𝑦 is the destination

state of the transition. The guards are given below. 𝑔
1𝑐5

and

C

CC

g3c4

s0

g5c2

g23

s3

s4

s2

g1c5

s5

u11c

u55c

u33c

g02

g3c5
g5c1

g1c4

s1
g01 g40, u40

s3c

s5c

s1c

Figure 3: UPPAAL model of formal specification model.

𝑔
3𝑐5

incorporate composite constraints in 𝑅
𝐶1
. 𝑔
1𝑐4

and 𝑔
3𝑐4

incorporate composite constraints in 𝑅
𝐶2
:

𝑔
01

← ((AEI − 1) ≥ clk𝑡V ≥ ARP) ,

𝑔
02

← (clk𝑡V = AEI) ,

𝑔
1𝑐4

← (clk𝑡
𝑎
= AVI) ∧ (clk𝑡V ≥ URI) ,

𝑔
1𝑐5

← (clk𝑡
𝑎
≤ (AVI − 1)) ∧ (clk𝑡V ≥ VRP) ,

𝑔
23

← (clk𝑡V = PWV) ,

𝑔
3𝑐4

← (clk𝑡
𝑎
= AVI) ∧ (clk𝑡V ≥ URI) ,

𝑔
3𝑐5

← (clk𝑡
𝑎
≤ (AVI − 1)) ∧ (clk𝑡V ≥ VRP) ,

𝑔
40

← (clk𝑡
𝑎
= PWA) ,

𝑔
5𝑐1

← ((AEI − 1) ≥ clk𝑡V ≥ ARP) ,

𝑔
5𝑐2

← (clk𝑡V = AEI) .

(8)

Timeline 𝑡V is reset in states 𝑠
0
and 𝑠
5
and timeline 𝑡

𝑎
is

reset in states 𝑠
1
and 𝑠

3
. In the UPPAAL model, timelines

are expressed using clock variables that are encoded as
part of the state, whereas, in CTTS, timelines are delays
on the transitions between states. In CTTS, timelines are
therefore essentially reset (automatically) after every tran-
sition. Constraints involving more than one transition are
encoded as composite constraints. In UPPAAL, clocks are
not automatically reset. Therefore, we need additional states
to reset clock variables. These additional states used to reset
clock variables are called committed states in UPPAALwhere
time is frozen. Hence, we split each of the CTTS states 𝑠

1
,

𝑠
3
, and 𝑠

5
into two locations in UPPAAL. For example, state

𝑠
1
is modeled as locations 𝑠

1
and 𝑠
1
𝑐. Incoming transitions

to state 𝑠
1
are mapped as incoming edges to location 𝑠

1
and

outgoing transitions of state 𝑠
1
are mapped to outgoing edges

of location 𝑠
1
𝑐. Clock is reset using an update 𝑢

11𝑐
= (clk𝑡

𝑎
=

0) on the edge from location 𝑠
1
to location 𝑠

1
𝑐. 𝑠
3
and 𝑠

5

are similarly modeled. The reason that we do not have a
committed state for 𝑠

0
is that the guard 𝑔

40
is dependent on

www.manaraa.com

6 Journal of Electrical and Computer Engineering

clock clk𝑡
𝑎
while the clock that is reset in this transition is

clk𝑡V. The updates are given below:

𝑢
11𝑐

= (clk𝑡
𝑎
= 0) ,

𝑢
33𝑐

= (clk𝑡
𝑎
= 0) ,

𝑢
40

= (clk𝑡V = 0) ,

𝑢
55𝑐

= (clk𝑡V = 0) .

(9)

We next describe the CTL properties that we verified.
The properties are specified using state (location) operator
𝐴, which is a path quantifier that denotes all paths emanat-
ing from this state. We also use the temporal operator []

(globally), which indicates all states in the path. We have one
property for each requirement. Belowwe give three examples.

VP.2 introduced a composite constraint encoded with the
following CTL property:

𝐴 [] {(clk𝑡V < URI) → ¬ (𝑠
4
)} . (10)

The above property specifies that no VP can be generated
within 𝑡V ∈ (0,URI). Note that we use state names (𝑠

4
) as

opposed to atomic propositions in the properties, because
each state (location) is associated with only one atomic
proposition. 𝑠

1
and 𝑠
1
𝑐 correspond to AS, 𝑠

2
corresponds to

AP
𝑎
, and so on. AS.1 requires that no AS can be sensed within

𝑡V ∈ (0,ARP), expressed as the following property:

𝐴 [] {(0 < clk𝑡V < ARP) → ¬ (𝑠
1
∨ 𝑠
1𝑐
)} . (11)

VS.1 states that no VS can be sensed within 𝑡V ∈ (0,VRP),
expressed as the CTL formula in UPPAAL as

𝐴 [] {(0 < clk𝑡V < VRP) → ¬ (𝑠
5
∨ 𝑠
5𝑐
)} . (12)

5. Formal Verification Methodology for
Object Code Control Programs

In this section, we develop a methodology for formal ver-
ification of control programs for DDD mode pacemakers.
Our methodology is targeted at the validation of the con-
trol programs at the object code level. For the verifica-
tion methodology, we employ the theory of Well-Founded
Equivalence Bisimulation (WEB) refinement [24], which is a
notion of correctness that defines what it means for a low-
level implementation (such as an object code program) to
satisfy a high-level specification (such as the specification
given in Section 4). In the context of WEB refinement,
both the implementation and specification are modeled as
transition systems (TSs). In Section 4,we have developed aTS
specification for pacemaker control.The object code program
can also be modeled as a TS. The instructions corresponding
to the control program can be modeled as functions that
capture the transitions of the program. The functions would
take as input the current program state and values of program
inputs and give the next state of the program as output.

Examined at a high-level, there are two differences
between the TS corresponding to the object code control
program and the specification TS. First, states of the speci-
fication TS can be encoded using 5 bits (AS, AP

𝑎
, VS, VP, and

AP
𝑑
), whereas states of the implementation TS have other

state components such as the registers in peripheral timers
used to enforce the various timing cycles in the controller.
The theory of WEB refinement [24] employs refinement
maps, which are functions that map implementation states
to specification states and are used to overcome differ-
ences in the implementation states and specification states.
Refinement maps enable the comparison of implementation
states and specification states, even if these states look very
different. Second, the object code programTS hasmanymore
transitions than the specification. For the case study we use,
the object code program has more than 2 million transitions,
whereas the specification TS has only 10 transitions. Thus,
typically, many transitions of the low-level implementation
controller can match a single transition of the specification.
This phenomenon is known as stuttering and is accounted for
by WEB refinement. Below are the definitions for WEBs and
WEB refinement. In [24–27] a more detailed description of
WEB refinement is provided.

Definition 4 (see [25]). 𝐵 ⊆ 𝑆 × 𝑆 is a WEB on TS
M = ⟨𝑆, 𝑅, 𝐿⟩ iff

(1) 𝐵 is an equivalence relation on 𝑆;
(2) ⟨∀𝑠, 𝑤 ∈ 𝑆~𝑠𝐵𝑤 → 𝐿(𝑠) = 𝐿(𝑤)⟩;
(3) There exist functions 𝑒𝑟𝑎𝑛𝑘𝑙 : 𝑆 × 𝑆 → N, 𝑒𝑟𝑎𝑛𝑘𝑡 :

𝑆 → 𝑊, such that ⟨𝑊, ⋖⟩ is well-founded, and

⟨∀𝑠, 𝑢, 𝑤 ∈ 𝑆 :: 𝑠𝐵𝑤 ∧ 𝑠𝑅𝑢 →

(a) ⟨∃V :: 𝑤𝑅V ∧ 𝑢𝐵V⟩∨
(b) (𝑢𝐵𝑤 ∧ 𝑒𝑟𝑎𝑛𝑘𝑡(𝑢) ⋖ 𝑒𝑟𝑎𝑛𝑘𝑡(𝑠))∨

(c) ⟨∃V :: 𝑤𝑅V∧𝑠𝐵V∧𝑒𝑟𝑎𝑛𝑘𝑙(V, 𝑢) < 𝑒𝑟𝑎𝑛𝑘𝑙(𝑤, 𝑢)⟩⟩.

Definition 5 (see [25]). Let M = ⟨𝑆, 𝑅, 𝐿⟩, M = ⟨𝑆

, 𝑅

, 𝐿

⟩,
and 𝑟 : 𝑆 → 𝑆

. We say that M is a WEB refinement of M
with respect to refinement map 𝑟, written M≈

𝑟
M, if there

exists a relation, 𝐵, such that ⟨∀𝑠 ∈ 𝑆 :: 𝑠𝐵𝑟(𝑠)⟩ and 𝐵 is a
WEB on the TS ⟨𝑆z𝑆

, 𝑅z𝑅

,L⟩, where L(𝑠) = 𝐿

(𝑠) for 𝑠

an 𝑆
 state andL(𝑠) = 𝐿

(𝑟(𝑠)) otherwise.

In the above definitions, M is the implementation TS
and and M is the specification TS. Informally, to prove a
WEB refinement, we need to show that every transition of the
implementation TS matches a transition of the specification
TS (case (a)) or it is a stuttering transition (case (b)),
meaning that both the implementation state and its successor
match the same specification state. Case (c) corresponds to
stutter on the specification side and this is not relevant for
our verification methodology as our specification is very
simple (with only 10 transitions) and will not stutter with
respect to the low-level object code controller TS. Rank
functions are employed to distinguish stutter from deadlock
(infinite stutter). Eventually, the implementation should cease
stuttering and make progress. If this does not happen, then
it points towards a deadlock bug in the implementation. To

www.manaraa.com

Journal of Electrical and Computer Engineering 7

define rank functions, we employ a well-founded structure
⟨𝑊, ⋖⟩, where 𝑊 is a set and ⋖ is a binary relation on 𝑊

such that there are no infinitely decreasing sequences on 𝑊,
with respect to ⋖. We employ the well-founded structure
consisting of the set of natural numbers and less than operator
on the naturals (⟨N, <⟩). The value of the rank function
should decrease when the implementation stutters.

The very nice property of WEB refinement is that it is
enough to reason about single transitions of the implemen-
tation and specification to establish a correctness proof. This
is easy to do on the specification side, as the specification
has only 10 transitions, whereas the object code control
program TS can have millions of transitions. Therefore, we
employ a decision procedure (SMT solver) to check theWEB
refinement proof obligations. There are several challenges to
applying an SMT solver for this problem. The first challenge
is that the WEB refinement definition cannot be encoded in
a decidable fragment of first-order logic and hence cannot
be directly checked using an SMT solver. We overcome this
challenge by exploiting the fact that the specification CTTS
is known. We use the specification to strengthen the WEB
refinement definition to a decidable set of proof obligations,
which are described subsequently in this section.The correct-
ness of the proof obligations is given byTheorem 6.

The second challenge is that of reachability. The WEB
refinement proof obligations need only to be checked for
the reachable states of the implementation. If we consider all
the states (including states which are not reachable from the
initial states), this would lead to spurious counterexamples,
making verification very hard and probably intractable.
Hence, as part of our verification methodology, we have also
derived an invariant property that should be satisfied by
the implementation. Invariant properties are those that are
satisfied only by reachable states of the implementation and
hence provide a useful mechanism to identify the reachable
states of the implementation for the SMT solver.The invariant
property is given below:

{{𝑟 (𝑤) = 𝑠
0
∧ (𝑤 ⋅ 𝑡𝑑V ≤ AEI)}

∨ {𝑟 (𝑤) = 𝑠
0
∧ (𝑤 ⋅ 𝑡𝑑

𝑎
= 𝑤 ⋅ 𝑡𝑑V)}

∨ {𝑟 (𝑤) = 𝑠
1
∧ (𝑤 ⋅ 𝑡𝑑

𝑎
≤ AVI)}

∨ {𝑟 (𝑤) = 𝑠
2
∧ (𝑤 ⋅ 𝑡𝑑V ≤ PWV)}

∨ {𝑟 (𝑤) = 𝑠
2
∧ (𝑤 ⋅ 𝑡𝑑V ≥ AEI)}

∨ {𝑟 (𝑤) = 𝑠
3
∧ (𝑤 ⋅ 𝑡𝑑

𝑎
≤ AVI)}

∨ {𝑟 (𝑤) = 𝑠
4
∧ (𝑤 ⋅ 𝑡𝑑

𝑎
≤ PWA)}

∨ {𝑟 (𝑤) = 𝑠
5
∧ (𝑤 ⋅ 𝑡𝑑V ≤ AEI)}} .

(13)

In the above 𝑤 is an implementation state. The invariant
uses the refinement map function 𝑟, which we define as
a function that projects the values AS, AP

𝑎
, VS, VP, and

AP
𝑑
from the implementation state to give a specification

state. The invariant stipulates that the reachable states of the
implementation will map to one of the specification states
under the refinement map. Also, the object code control

program will require two counters we call 𝑡𝑑
𝑎
and 𝑡𝑑V that

keep track of time that has passed since the last atrial and
ventricle event, respectively. 𝑤 ⋅ 𝑡𝑑

𝑎
and 𝑤 ⋅ 𝑡𝑑V indicate

the counters 𝑡𝑑
𝑎
and 𝑡𝑑V in the implementation state 𝑤.

We can deduce from the pacemaker specification and the
clinical values of derived and fundamental timing cycles of
pacemaker that all the transitions of the controller are always
dependent on the value of only one of the two counters. An
active counter at any state is the counter, based on whose
value the transitions will be made. The invariant also gives
the permissible range for the active counter at each state. The
permissible ranges are given using constants AEI, AVI, PWV,
and PWA. In the TTS specification MPM, these constants
correspond to time. However, when these constants are used
in the invariant and proof obligations that follow, they are
integer constants that still define the same time constants, but
in terms of number of clock cycles of the microcontroller.
Hence, their value will depend on the clock rate of the
microcontroller that is used.

Next we derive the proof obligations. The pacemaker
specification (Figure 2) is nondeterministic. For the pace-
maker specification, we need 16 proof obligations, where 10
proof obligations represent the nonstuttering cases (which
correspond to the transitions of the specifications) and the
other 6 proof obligations represent the stuttering cases, one
for each state of the specification. In the proof obligations,
𝑤 is an implementation state and V is its successor (imple-
mentation is also nondeterministic). 𝐴 in and 𝑉in correspond
to the inputs to the pacemaker from the atrium and ven-
tricle, respectively. 𝐴 in and 𝑉in are typically implemented
as external interrupts in the controller. PF01–PF06 give the
proof obligations corresponding to the stuttering cases.When
stutter occurs, we have to show that a witness rank function
decreases. We have six stutter cases for six states of the
specification.

PF01:

[(𝑟 (𝑤) = 𝑠
0
) ∧ (ARP ≤ 𝑤 ⋅ 𝑡𝑑V ≤ AEI − 1)

∧ (𝐴 in = 0)] → (𝑟 (V) = 𝑠
0
) .

(14)

PF02:

[(𝑟 (𝑤) = 𝑠
1
) ∧ (𝑤 ⋅ 𝑡𝑑

𝑎
≤ AVI − 1) ∧ (𝑉in = 0)

∧ (𝑤 ⋅ 𝑡𝑑V ≥ VRP)] → (𝑟 (V) = 𝑠
1
) .

(15)

PF03:

[(𝑟 (𝑤) = 𝑠
2
) ∧ ¬ (𝑤 ⋅ 𝑡𝑑V = PWV)] → (𝑟 (V) = 𝑠

2
) . (16)

PF04:

[(𝑟 (𝑤) = 𝑠
3
) ∧ (𝑤 ⋅ 𝑡𝑑

𝑎
≤ AVI − 1) ∧ (𝑉in = 0)

∧ (𝑤 ⋅ 𝑡𝑑V ≥ VRP)] → (𝑟 (V) = 𝑠
3
) .

(17)

PF05:

[(𝑟 (𝑤) = 𝑠
4
) ∧ ¬ (𝑤 ⋅ 𝑡𝑑

𝑎
= PWA)] → (𝑟 (V) = 𝑠

4
) . (18)

www.manaraa.com

8 Journal of Electrical and Computer Engineering

PF06:

[(𝑟 (𝑤) = 𝑠
5
) ∧ (ARP ≤ 𝑤 ⋅ 𝑡𝑑V ≤ AEI − 1)

∧ (𝐴 in = 0)] → (𝑟 (V) = 𝑠
5
) .

(19)

We define the rank of an implementation state 𝑤 as the
difference between the maximum value (max) the active
counter can take at that state and the current value of the
counter. When counter = max, the implementation should
make progress with respect to the specification. Otherwise
the implementation stutters. Rank

𝑎
is the rank for the states

where the active counter is 𝑤 ⋅ 𝑡𝑑
𝑎
and RankV is the rank for

the states where the active counter is𝑤 ⋅ 𝑡𝑑V. Note that, based
on the invariant property, Rank

𝑎
and RankV can be combined

into a single rank function for all the implementation states:

Rank
𝑎
: rank (𝑤) = max−𝑤 ⋅ 𝑡𝑑

𝑎
,

RankV : rank (𝑤) = max−𝑤 ⋅ 𝑡𝑑V.
(20)

PF07–PF16 give the proof obligations corresponding to the
nonstuttering cases.

PF07:

[(𝑟 (𝑤) = 𝑠
0
) ∧ (ARP ≤ 𝑤 ⋅ 𝑡𝑑V ≤ AEI − 1)

∧ (𝐴 in = 1)] → (𝑟 (V) = 𝑠
1
) .

(21)

PF08:

[(𝑟 (𝑤) = 𝑠
0
) ∧ (𝑤 ⋅ 𝑡𝑑V = AEI)] → (𝑟 (V) = 𝑠

2
) . (22)

PF09:

[(𝑟 (𝑤) = 𝑠
1
) ∧ (𝑤 ⋅ 𝑡𝑑

𝑎
≤ AVI − 1) ∧ (𝑉in = 1)

∧ (𝑤 ⋅ 𝑡𝑑V ≥ VRP)] → (𝑟 (V) = 𝑠
5
) .

(23)

PF10:

[(𝑟 (𝑤) = 𝑠
1
) ∧ (𝑤 ⋅ 𝑡𝑑

𝑎
= AVI) ∧ (𝑡𝑑V ≥ URI)]

→ (𝑟 (V) = 𝑠
4
) .

(24)

PF11:

[(𝑟 (𝑤) = 𝑠
2
) ∧ (𝑤 ⋅ 𝑡𝑑V = PWV)] → (𝑟 (V) = 𝑠

3
) . (25)

PF12:

[(𝑟 (𝑤) = 𝑠
3
) ∧ (𝑤 ⋅ 𝑡𝑑

𝑎
≤ AVI − 1) ∧ (𝑉in = 1)

∧ (𝑤 ⋅ 𝑡𝑑V ≥ VRP)] → (𝑟 (V) = 𝑠
5
) .

(26)

PF13:

[(𝑟 (𝑤) = 𝑠
3
) ∧ (𝑤 ⋅ 𝑡𝑑

𝑎
= AVI) ∧ (𝑡𝑑V ≥ URI)]

→ (𝑟 (V) = 𝑠
4
) .

(27)

PF14:

[(𝑟 (𝑤) = 𝑠
4
) ∧ (𝑤 ⋅ 𝑡𝑑

𝑎
= PWA)] → (𝑟 (V) = 𝑠

0
) . (28)

PF15:

[(𝑟 (𝑤) = 𝑠
5
) ∧ (ARP ≤ 𝑤 ⋅ 𝑡𝑑V ≤ AEI − 1)

∧ (𝐴 in = 1)] → (𝑟 (V) = 𝑠
1
) .

(29)

PF16:

[(𝑟 (𝑤) = 𝑠
5
) ∧ (𝑤 ⋅ 𝑡𝑑V = AEI)] → (𝑟 (V) = 𝑠

2
) . (30)

Note that the invariant guarantees that PF01–PF16 cover
all reachable states of implementation.The correctness of the
proof obligations is given by the following theorem.

Theorem 6. Let M = M
𝑃𝑀

. Let M be an implementation
of M. M is WEB refinement of M if every transition of M
satisfies one of the following, PF01–PF16, and if every non-
stuttering proof obligation (PF07–PF16) is satisfied by at least
one transition ofM.

Proof. For an implementation (object code) to be a WEB
refinement of a specification (CTTS model), as per the
definition of WEB refinement, every transition of the imple-
mentation has to match a transition of the specification and
vice versa, up to stuttering. To prove the above theorem,
we use a proof by exhaustion (or proof by cases). First, we
show that the cases are exhaustive; that is, all the transitions
of the implementation and specification are accounted for.
PF07–PF16 account for each of the specification transitions.
The implementation states are characterized by the invariant.
States that are not sensitive to 𝐴 in or 𝑉in have one outgoing
transition. States that are sensitive to 𝐴 in or 𝑉in have two
outgoing transitions depending on the value of the input.
Thus, the invariants along with the values of 𝐴 in and 𝑉in
characterize all the transitions of the implementation. Each
proof obligation (PF01–PF16) corresponds to a subset of
the implementation transitions. The union of the set of
implementation transitions covered by each of the proof
obligations PF01–PF16 is equal to the set of all transitions of
the implementation. Second, we give a proof of each of the
cases. Each of the proof obligations PF07–PF16 satisfies case
(a) of Definition 4 (nonstuttering transitions). Each of the
proof obligations PF01–PF06 satisfies case (b) of Definition 4
(stuttering transitions). Therefore, if the proof obligations
are satisfied by an implementation TS, it follows that the
implementation TS is a WEB refinement of the pacemaker
specificationMPM.

6. Experimental Results

We applied our verification methodology to the object code
of aDDDmode pacemaker control program implemented on
an ARM Cortex M3 based NXP LPC 1768 microcontroller.
The program uses two peripheral interrupt-driven timers of
the LPC1768 to implement the two timelines 𝑡

𝑎
and 𝑡V. Timer0

is used as 𝑡V with fourmatch registers T0MR0–T0MR3having
values of ARP, AEI, VRP, and URI, respectively. Similarly
Timer1 is used as 𝑡

𝑎
with one match register T1MR0 having

value of AVI. Whenever a timer reaches a value equal to
a value in any of its match registers, an internal interrupt

www.manaraa.com

Journal of Electrical and Computer Engineering 9

is generated. The pacemaker receives two inputs, which are
the atrial sense and the ventricle sense. These inputs are
implemented using external interrupts of the LCP1768. We
estimate that the object code corresponding to the control
program has over 2 million transitions.

To check the correctness of the object code control
program, we use the WEB refinement proof obligations.
We used the z3 [8] SMT solver for verification. The input
language to the z3 solver is the SMT-LIB language [28].
The verification process involves four high-level steps. The
first step is to model the object code control program
as a TS in the SMT-LIB language. This was achieved by
encoding each instruction as a function in the SMT-LIB
language (called instruction functions).The instruction func-
tions essentially specify how the instruction modifies the
program state. Each of the instructions and hence instruction
functions captures a set of transitions of the object code.
The transitions corresponding to all the instructions in the
program thus give all the transitions of the TS model of
the object code program. The second step is to compute the
preconditions and postconditions for each instruction. Pre-
conditions and postconditions are predicate conditions that
program states preceding and succeeding an instructionmust
satisfy, respectively. The preconditions and postconditions
essentially determine the set of states of program preceding
and succeeding an instruction.The third step is to check that
each instruction function satisfies at least one of the proof
obligations PF01–PF16. This was checked using the z3 solver
[8]. If an instruction function did not satisfy any of the proof
obligations, this points to a bug. Finally (fourth step), wewant
to ensure that all the nonstuttering proof obligations (PF07–
PF16) were satisfied by at least one instruction function.
If there is a nonstuttering proof obligation that was not
satisfied by any instruction function, this indicates that there
are behaviors of the specification that are not captured by
the implementation and also point to a bug in the imple-
mentation.

The first, third, and fourth steps of the verification process
can be automated. Automation of the first step can be
achieved using a tool that can synthesize the instruction func-
tions in SMT-LIB language from the object code. Currently,
there are no available tools that can perform such translations.
However, we are developing a tool that can handle a subset of
the instructions of the ARMCortexM3microprocessor. Note
that if there are bugs in the translation tool from object code
to SMT-LIB, these bugs will generate incorrect instructions
functions that will be caught during the verification process.
Such bugs will raise spurious counterexamples as the bugs
are due to the translation process and not anomalies of the
object code. The third step can be automated by running a
loop through PF01–PF16 for each instruction function. Each
iteration of the loop would call the z3 solver to check if the
instruction function satisfies one of the proof obligations
PF01–PF16. The fourth step can be automated along with
the third step by using flag variables that track if each of
the proof obligations PF07–PF16 was satisfied by at least one
instruction function.

The pacemaker control program was modeled using 224
instruction functions. Each instruction function required a

verification check.Therefore, the proof required 224 verifica-
tion checks using the z3 solver. Each of the verification checks
was completed in less than one second. During verification,
we also found a number of functional bugs in the object code.
We describe two of the bugs that we found.

Bug1. Pins 3 and 1 of PORT1 of LPC1768 are used for AP
and VP. PORT1 is controlled by the FIO1SET and FIO1CLR
registers, which are used to set and clear the pin values,
respectively. The FIO1CLR register was being updated incor-
rectly causing the program state to transition incorrectly.
Specifically, the programwas transitioning from 𝑠

3
to 𝑠
0
to 𝑠
4
,

when it should be transitioning from 𝑠
3
to 𝑠
4
directly.The bug

was found and fixed. This bug may not be easy to find using
testing because the program still seems to behave correctly
even though it visits the state 𝑠

0
temporarily. However, when

the buggy program reaches state 𝑠
0
, if an external interrupt

occurs in this state, the program will react as if it is in state 𝑠
0

instead of state 𝑠
4
.

Bug2.The IO2IntStatR register contains the current status of
external interrupts. A value of 1 or 2 of IO2IntStatR indicates
that anAS orVS has occurred, respectively.Thebugmanifests
when a VS is followed by an AS. In this case, the IO2IntStatR
register value changes from 1 to 3, which is incorrect and is
indicating that both an AS and a VS have occurred. Thus
the source of the external interrupt is misinterpreted as AS
instead of VS. The reason for the bug is that the interrupt
status in the IO2IntStatR was not cleared after the occurrence
of an AS. This bug was found and fixed.

7. Conclusions

We have developed a methodology for checking the func-
tional correctness of DDDmode pacemaker controllers. Our
methodology is targeted at the object code of the controller,
which directly corresponds to the processor instructions
executed by the microcontroller embedded in the device.
The verification methodology is based on the set of safety
requirements given in the Boston Scientific clinical literature
on pacemakers [29]. Boston Scientific is a leading manu-
facturer and seller of pacemakers and several other medical
solutions [30]. The values used for the critical timing cycles
of DDD mode pacemakers are obtained from the actual
clinical settings [31]. The Boston Scientific requirements are
formalized and presented in [17] based on the authentic
clinical literature [29, 32]. In [13] the same set of requirements
are modeled and verified in UPPAAL. We have developed
a CTTS model that captures all the Boston Scientific safety
requirements. Our goal in developing this CTTS specifica-
tion model is to use it for verification of the object code
of real world pacemaker software controller. Our work is
unique because it is the first formal verification methodology
targeted at verification of safety of object code for DDD
mode pacemakers. Our verification methodology was used
to efficiently verify a control program with over two million
transitions against the CTTS specification.The methodology
constituted an invariant that captures the set of reachable
states of a pacemaker control program, and a set of proof

www.manaraa.com

10 Journal of Electrical and Computer Engineering

obligations that when verified guarantee the safety of the
control program. Both the invariant and the proof obligations
were developed based on the CTTS specification. Pacemaker
control being a real-time system has both functional and
timing requirements. Our specification CTTS captures both
functional and timing requirements. However, in this paper,
we have focused on functional verification of object code
control programs. For future work, we plan to extend our
methods using the theory of timed WEB refinements [33] to
address the verification of timing requirements as well.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. Jetley, S. P. Iyer, and P. L. Jones, “A formal methods approach
to medical device review,” Computer, vol. 39, no. 4, pp. 61–67,
2006.

[2] I. Lee, G. J. Pappas, R. Cleaveland et al., “High-confidence
medical device software and systems,” Computer, vol. 39, no. 4,
pp. 33–38, 2006.

[3] W. H. Maisel, M. O. Sweeney, W. G. Stevenson, K. E. Ellison,
and L.M. Epstein, “Recalls and safety alerts involving pacemak-
ers and implantable cardioverter-defibrillator generators,” The
Journal of the American Medical Association, vol. 286, no. 7, pp.
793–799, 2001.

[4] http://www.fda.gov/MedicalDevices/Safety/ListofRecalls/.
[5] E. M. Clarke and J. M. Wing, “Formal methods: state of the art

and future directions,” ACM Computing Surveys, vol. 28, no. 4,
pp. 626–643, 1996.

[6] L. De Moura and N. Bjørner, “Satisfiability modulo theories:
introduction and applications,” Communications of the ACM,
vol. 54, no. 9, pp. 69–77, 2011.

[7] L. De Moura and G. O. Passmore, “The strategy challenge in
SMT solving,” in Automated Reasoning and Mathematics, pp.
15–44, Springer, Berlin, Germany, 2013.

[8] http://z3.codeplex.com/.
[9] A. W. Chow and A. E. Buxton, Implantable Cardiac Pacemakers

and Defibrillators: All YouWanted to Know, JohnWiley & Sons,
2008.

[10] S. S. Barold, R. X. Stroobandt, and A. F. Sinnaeve, Cardiac
Pacemakers and Resynchronization Step by Step: An Illustrated
Guide, John Wiley & Sons, 2010.

[11] L. A. Tuan, M. C. Zheng, and Q. T. Tho, “Modeling and verifi-
cation of safety critical systems: a case study on pacemaker,” in
Proceedings of the 4th IEEE International Conference on Secure
Software Integration and Reliability Improvement (SSIRI ’10), pp.
23–32, IEEE, June 2010.

[12] A. O. Gomes and M. V. M. Oliveira, “Formal specification of a
cardiac pacing system,” in FM 2009: Formal Methods, pp. 692–
707, Springer, Berlin, Germany, 2009.

[13] Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam,
“Modeling and verification of a dual chamber implantable
pacemaker,” in Tools and Algorithms for the Construction and
Analysis of Systems, vol. 7214 of Lecture Notes in Computer
Science, pp. 188–203, Springer, Berlin, Germany, 2012.

[14] Z. Jiang, M. Pajic, R. Alur, and R. Mangharam, “Closed-
loop verification of medical devices with model abstraction

and refinement,” International Journal on Software Tools for
Technology Transfer, vol. 16, no. 2, pp. 191–213, 2014.

[15] Z. Jiang, M. Pajic, and R. Mangharam, “Model-based closed-
loop testing of implantable pacemakers,” in Proceedings of the
2nd International Conference on Cyber-Physical Systems (ICCPS
’11), pp. 131–140, IEEE, Chicago, Ill, USA, April 2011.

[16] Z. Jiang, M. Pajic, and R. Mangharam, “Cyber-physical model-
ing of implantable cardiac medical devices,” Proceedings of the
IEEE, vol. 100, no. 1, pp. 122–137, 2012.

[17] M. Pajic, Z. Jiang, I. Lee,O. Sokolsky, andR.Mangharam, “From
verification to implementation: a model translation tool and a
pacemaker case study,” in Proceedings of the 18th IEEE Real Time
and Embedded Technology and Applications Symposium (RTAS
’12), pp. 173–184, April 2012.

[18] I. Ibrahim, “Implantable medical devices employing capacitive
control of high voltage switches,” US Patent 5,178,140, January
1993, http://www.google.co.uk/patents/US5178140.

[19] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,”
International Journal on Software Tools for Technology Transfer,
vol. 1, no. 1-2, pp. 134–152, 1997.

[20] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W.
Yi, “Developing UPPAAL over 15 years,” Software: Practice and
Experience, vol. 41, no. 2, pp. 133–142, 2011.

[21] S. Li, S. Balaguer, A. David, K. G. Larsen, B. Nielsen, and
S. Pusinskas, “Scenario-based verification of real-time systems
using UPPAAL,” Formal Methods in System Design, vol. 37, no.
2-3, pp. 200–264, 2010.

[22] E. M. Clarke and E. A. Emerson, “Design and synthesis
of synchronization skeletons using branching time temporal
logic,” in Logics of Programs, vol. 131, pp. 52–71, Springer, Berlin,
Germany, 1982.

[23] R. Alur and D. L. Dill, “A theory of timed automata,”Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[24] P. Manolios, “A compositional theory of refinement for branch-
ing time,” inCorrect Hardware Design and VerificationMethods,
pp. 304–318, Springer, Berlin, Germany, 2003.

[25] P. Manolios, Mechanical verification of reactive systems [Ph.D.
thesis], University of Texas at Austin, Austin, Tex, USA, 2001.

[26] P. Manolios and S. K. Srinivasan, “Automatic verification of
safety and liveness for pipelined machines using WEB refine-
ment,” ACM Transactions on Design Automation of Electronic
Systems, vol. 13, no. 3, p. 45, 2008.

[27] P.Manolios and S. K. Srinivasan, “A refinement-based composi-
tional reasoning framework for pipelinedmachine verification,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 4, pp. 353–364, 2008.

[28] The Satisfiability Modulo Theories Library, 2013, http://www
.smtlib.org/.

[29] B. Scientific, Pacemaker System Specification, Boston Scientific,
2007.

[30] Boston Scientific, http://bostonscientific.com/.
[31] The Compass—Technical Guide to Boston Scientific Cardiac

Rhythm Management Products, 2007.
[32] S. S. Barold, R. X. Stroobandt, and A. F. Sinnaeve, Cardiac

Pacemakers Step-by-Step: An Illustrated Guide, John Wiley &
Sons, 2008.

[33] M. A. L. Dubasi, S. K. Srinivasan, and V. Wijayasekara, “Timed
refinement for verification of real-time object code programs,”
in Verified Software: Theories, Tools and Experiments, D. Gian-
nakopoulou and D. Kroening, Eds., vol. 8471 of Lecture Notes in
Computer Science, pp. 252–269, Springer, 2014.

www.manaraa.com

Copyright of Journal of Electrical & Computer Engineering is the property of Hindawi
Publishing Corporation and its content may not be copied or emailed to multiple sites or
posted to a listserv without the copyright holder's express written permission. However, users
may print, download, or email articles for individual use.

